
CS395T: Continuous Algorithms
Homework II

Kevin Tian

Due date: February 15, 2024, start of class (3:30 PM).

Please list all collaborators on the first page of your solutions. Unless we have discussed and I have
specified otherwise, homework is not accepted if it is not turned in by hand at the start of class,
or turned in electronically on Canvas by then. Send me an email to discuss any exceptions.

1 Problem 1
Let f : Rd → R be a differentiable, convex function, and for all λ > 0, let

x?λ := argminx∈Rdf(x) +
λ

2
‖x‖22 .

(i) Prove that for any λ′ > λ > 0, we have ‖x?λ‖2 ≥ ‖x
?
λ′‖2.

(ii) Suppose ‖∇f(0d)‖2 ≤ L and let R > 0. Give a λR such that for any λ ≥ λR, ‖x?λ‖2 ≤ R.

2 Problem 2
Let M ∈ Sd×d�0 , and let ‖·‖ be a norm on Rd.

(i) Prove that if M[v, v] ≤ ‖v‖2 for all v ∈ Rd, then ‖Mv‖∗ ≤ ‖v‖ for all v ∈ Rd.1

(ii) Prove that M[v, v] ≤ ‖v‖2 for all v ∈ Rd iff M−1[v, v] ≥ ‖v‖2∗ for all v ∈ Rd.2

3 Problem 3
Let X ⊆ Rd, let f : X → R be convex, differentiable, and L-Lipschitz in ‖·‖, and let ψ : X → R be
convex and admit subgradients everywhere in X . Let F (x) = f(x) +ψ(x).3 Finally, let ϕ : X → R
be 1-strongly convex in ‖·‖ and of Legendre type. Consider iterating the update

xt+1 ← argminx∈X {〈η∇f(xt), x〉+ ηψ(x) +Dϕ(x‖xt)} , for 0 ≤ t < T, η > 0.

Give an initialization strategy for choosing x0, and prove that following your initialization strategy,

F (x̄)− F (x?) ≤ Θ

ηT
+
ηL2

2
,

where x̄ = 1
T

∑
0≤t<T xt, x

? ∈ argminx∈XF (x), and Θ ≥ supx0∈X Dϕ(x?‖x0).

1This justifies that for general norms, the second claim in Lemma 14, Part II is true. Note that the last part of
the proof of Lemma 6, Part II implicitly used this claim in the `2 case.

2Combined with ∇2f∗(∇f(x)) = (∇2f(x))−1, shown in class when f, f∗ are twice-differentiable, this gives a
simple proof of smoothness-strong convexity duality for twice-differentiable convex functions in general norms.

3The purpose of this problem is to explore how to generalize the mirror descent framework in Theorem 2, Part
III, to handle composite objectives just as gradient descent can, as shown by Section 5.2, Part II.
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4 Problem 4
(i) Prove that the following 2d×2d matrix is positive semidefinite, for any a ∈ R and M ∈ Sd×d�0 :(

a2M aM
aM M

)
.

(ii) Prove that for any {ai}i∈[n] ⊂ R, and {Mi}i∈[n] ⊂ Sd×d�0 satisfying
∑
i∈[n] Mi � Id, we have4∑

i∈[n]

aiMi

2

�
∑
i∈[n]

a2iMi.

5 Problem 5
Let f : Rd → R be differentiable, and let x? := argminx∈B(R)f(x) exist and be unique. Suppose
that A is a randomized algorithm which produces a point x ∈ B(R) satisfying

E [f(x)− f(x?)] ≤ ε.

Let g : B(R)→ Rd be a randomized estimator satisfying

Eg(x) = ∇f(x), E ‖g(x)‖22 ≤ L
2, for all x ∈ B(R).

(i) Let α > 0, δ ∈ (0, 1). Given x, x′ ∈ B(R), design an algorithm which calls g O(L
2R2

α2 log 1
δ )

times, and estimates f(x)− f(x′) to additive error α with probability ≥ 1− δ.5

(ii) Give an algorithm which calls A O(log 1
δ ) times and g O(L

2R2

ε2 polylog( 1
δ )) times,6 and pro-

duces x such that with probability ≥ 1− δ,

f(x)− f(x?) ≤ 3ε.

4This can be viewed as a matrix extension of the Cauchy-Schwarz inequality.
5It may be helpful to first write f(x)− f(x′) as an integral.
6I am curious to see how low people can get the polylog :)
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